Event-based, 6-DOF Camera Tracking from Photometric Depth Maps


In contrast to standard cameras, which produce frames at a fixed rate, event cameras respond asynchronously to pixel-level brightness changes, thus enabling the design of new algorithms for high-speed applications with latencies of microseconds. However, this advantage comes at a cost: because the output is composed by a sequence of events, traditional computer-vision algorithms are not applicable, so that a new paradigm shift is needed. We present an event-based approach for ego-motion estimation, which provides pose updates upon the arrival of each event, thus virtually eliminating latency. Our method is the first work addressing and demonstrating event-based pose tracking in six degrees-of-freedom (DOF) motions in realistic and natural scenes, and it is able to track high-speed motions. The method is successfully evaluated in both indoor and outdoor scenes.

IEEE Transactions on Pattern Analysis and Machine Intelligence